使用 IRONXL FOR PYTHON 如何在 Python 中讀取 Excel 文件 Curtis Chau 更新日期:6月 22, 2025 Download IronXL pip 下載 Start Free Trial Copy for LLMs Copy for LLMs Copy page as Markdown for LLMs Open in ChatGPT Ask ChatGPT about this page Open in Gemini Ask Gemini about this page Open in Grok Ask Grok about this page Open in Perplexity Ask Perplexity about this page Share Share on Facebook Share on X (Twitter) Share on LinkedIn Copy URL Email article Working with Excel files is a common requirement in data analysis and automation tasks. Python, with its extensive set of libraries, offers various ways to interact with XLSX files. In this tutorial, we'll learn how to read Excel files using IronXL, a Python Excel library. IronXL: Python Excel Library IronXL for Python is designed to help developers read and write Excel files easily in Python. Not only can you write Excel files, but you can also work with multiple Excel sheets in a single go. This library is perfect for writing Excel files without installing Microsoft Excel on your machine. When you need to import data directly into an Excel spreadsheet, IronXL comes to the rescue. IronXL makes handling Excel spreadsheets simple. It helps to manage data across multiple sheets in an XLSX file easily. Let's see how we can read Excel files in Python using IronXL. How to Read Excel Files in Python The following steps go over the process involved in reading Excel files in Python. Create a Python file in Visual Studio code. Install the Python Excel library using pip. Load the Excel file which we need to read Iterate Excel data using loops Show iterated data on the console Prerequisites Before diving into the tutorial, ensure you have the following prerequisites installed on your system: .NET 6.0 SDK: IronXL is built on .NET, requiring the .NET 6.0 SDK to be installed on your system. Python 3.0+: The tutorial assumes you have Python 3.0 or higher installed. pip: Ensure pip, Python's package installer, is installed as it will be used to install IronXL. Setting Up Your Environment 1. Creating a File in Visual Studio Code Open Visual Studio Code and create a new Python file named ReadExcel.py. This file will contain our script to read Excel files using IronXL. 2. Installing IronXL Open the command line within Visual Studio Code by selecting Terminal > New Terminal from the menu. Install IronXL by running the following command: pip install ironxl pip install ironxl SHELL Writing the Code Now, let's break down the code into sections and explain each part. Importing Libraries from ironxl import * import sys from ironxl import * import sys PYTHON Here, we import everything from the ironxl library, which provides the functionality to work with Excel files. sys is used to set the path where Python is installed, which is necessary for IronXL to function correctly. Setting Python Installation Path sys.prefix = r'C:\Users\User Name\AppData\Local\Programs\Python\Python312' sys.prefix = r'C:\Users\User Name\AppData\Local\Programs\Python\Python312' PYTHON sys.prefix is assigned the path to your Python installation directory. This preparatory step might not be necessary in every environment but is essential in some configurations to prevent path-related issues. Setting License Key License.LicenseKey = "License-Key" License.LicenseKey = "License-Key" PYTHON The IronXL library requires a valid license key to unlock all its features. This line of code License.LicenseKey = "License-Key" is where you would insert your obtained license key. Without a valid license, IronXL will not work. Loading the Workbook workbook = WorkBook.Load("data.xlsx") workbook = WorkBook.Load("data.xlsx") PYTHON This section of the script, workbook = WorkBook.Load("data.xlsx"), demonstrates how to load an Excel workbook. WorkBook.Load is a method provided by IronXL to open an existing Excel file, specified by its file path. The example uses "data.xlsx", assuming this file is located in the same directory as the script. If your file is elsewhere, you'll need to provide the complete file path. Selecting a Worksheet worksheet = workbook.WorkSheets[0] worksheet = workbook.WorkSheets[0] PYTHON After loading the workbook, the next step is to select a worksheet. The workbook.WorkSheets[0] line accesses the first worksheet in the Excel file. Worksheets are indexed starting at 0, so this code snippet effectively selects the first sheet. Reading and Displaying Data print("Sample data from A2:A5:") for cell in worksheet["A2:A5"]: print("Cell {} has value '{}'".format(cell.AddressString, cell.Text)) print("Sample data from A2:A5:") for cell in worksheet["A2:A5"]: print("Cell {} has value '{}'".format(cell.AddressString, cell.Text)) PYTHON This part of the script exemplifies how to read and display data from specific cells. By iterating over a cell range for the cells in the worksheet["A2:A5"], we access each cell's address and text value. You can retrieve information from predefined areas within a sheet. Performing Calculations IronXL provides functions to perform simple calculations directly on data ranges within an Excel sheet. The following sections of the code demonstrate how to perform simple calculations like sum, minimum, and maximum on data within a specified range. total_sum = worksheet["B2:B10"].Sum() print("Total Sum of B2:B10: ", total_sum) minimum_value = worksheet["C2:C10"].Min() print("Minimum Value in C2:C10: ", minimum_value) maximum_value = worksheet["D2:D10"].Max() print("Maximum Value in D2:D10: ", maximum_value) total_sum = worksheet["B2:B10"].Sum() print("Total Sum of B2:B10: ", total_sum) minimum_value = worksheet["C2:C10"].Min() print("Minimum Value in C2:C10: ", minimum_value) maximum_value = worksheet["D2:D10"].Max() print("Maximum Value in D2:D10: ", maximum_value) PYTHON Finding Unique Values This part of the script demonstrates how to identify unique values within a specified range of an Excel sheet: unique_values = set(cell.Text for cell in worksheet["F2:F10"]) print("Unique Values in F2:F10: ", unique_values) unique_values = set(cell.Text for cell in worksheet["F2:F10"]) print("Unique Values in F2:F10: ", unique_values) PYTHON To achieve this, a set comprehension is utilized. Sets in Python are collections that automatically eliminate duplicate entries, making them perfect for finding unique values. The comprehension iterates over each cell in the range F2:F10, accessing the text content of each cell using cell.Text. By placing this iteration inside a set, we ensure that only unique values are kept. Counting Occurrences of a Specific Value Finally, this snippet counts how many times a specific value occurs in a given range. specific_value = '5' # Adjust this as needed based on your data occurrences = sum(cell.Text == specific_value for cell in worksheet["G2:G10"]) print(f"Occurrences of value '{specific_value}' in G2:G10: ", occurrences) specific_value = '5' # Adjust this as needed based on your data occurrences = sum(cell.Text == specific_value for cell in worksheet["G2:G10"]) print(f"Occurrences of value '{specific_value}' in G2:G10: ", occurrences) PYTHON The goal here is to quantify the occurrence of a specific value, labelled here as specific_value. The code employs a generator expression that iterates over each cell in the range G2:G10, comparing the cell's text content to specific_value. The expression cell.Text == specific_value evaluates to True for each cell containing the target value and False otherwise. The sum function adds up these Boolean values, treating True as 1 and False as 0, effectively counting the number of times the specific value occurs. Full Code Example Here is the complete code for a better understanding of the code: from ironxl import * import sys # Setting Python installation path sys.prefix = r'C:\Users\User Name\AppData\Local\Programs\Python\Python312' # Setting the license key for IronXL License.LicenseKey = "License-Key" # Load the workbook workbook = WorkBook.Load("data.xlsx") # Select the worksheet at index 0 worksheet = workbook.WorkSheets[0] # Display values in a specific range as an example print("Sample data from A2:A5:") for cell in worksheet["A2:A5"]: print("Cell {} has value '{}'".format(cell.AddressString, cell.Text)) # Calculate the sum of values in a different range total_sum = worksheet["B2:B10"].Sum() print("Total Sum of B2:B10: ", total_sum) # Calculate the minimum value in another range minimum_value = worksheet["C2:C10"].Min() print("Minimum Value in C2:C10: ", minimum_value) # Calculate the maximum value in a different range maximum_value = worksheet["D2:D10"].Max() print("Maximum Value in D2:D10: ", maximum_value) # Find unique values in a specified range unique_values = set(cell.Text for cell in worksheet["F2:F10"]) print("Unique Values in F2:F10: ", unique_values) # Count occurrences of a specific value in a different range specific_value = '5' # Adjust this as needed based on your data occurrences = sum(cell.Text == specific_value for cell in worksheet["G2:G10"]) print(f"Occurrences of value '{specific_value}' in G2:G10: ", occurrences) from ironxl import * import sys # Setting Python installation path sys.prefix = r'C:\Users\User Name\AppData\Local\Programs\Python\Python312' # Setting the license key for IronXL License.LicenseKey = "License-Key" # Load the workbook workbook = WorkBook.Load("data.xlsx") # Select the worksheet at index 0 worksheet = workbook.WorkSheets[0] # Display values in a specific range as an example print("Sample data from A2:A5:") for cell in worksheet["A2:A5"]: print("Cell {} has value '{}'".format(cell.AddressString, cell.Text)) # Calculate the sum of values in a different range total_sum = worksheet["B2:B10"].Sum() print("Total Sum of B2:B10: ", total_sum) # Calculate the minimum value in another range minimum_value = worksheet["C2:C10"].Min() print("Minimum Value in C2:C10: ", minimum_value) # Calculate the maximum value in a different range maximum_value = worksheet["D2:D10"].Max() print("Maximum Value in D2:D10: ", maximum_value) # Find unique values in a specified range unique_values = set(cell.Text for cell in worksheet["F2:F10"]) print("Unique Values in F2:F10: ", unique_values) # Count occurrences of a specific value in a different range specific_value = '5' # Adjust this as needed based on your data occurrences = sum(cell.Text == specific_value for cell in worksheet["G2:G10"]) print(f"Occurrences of value '{specific_value}' in G2:G10: ", occurrences) PYTHON Output After running the ReadExcel.py Python file, you'll see the following output displayed in your console, which reflects the results of the operations carried out by the script on the Excel data. Conclusion In this tutorial, we've explored how to set up a Python environment to use IronXL for reading Excel files. We've covered installing the necessary software, writing the script to load an Excel workbook, select a worksheet, read the data, perform basic data analysis operations, and more. IronXL provides a powerful API for working with Excel files in Python, enabling data analysis, data cleaning, and visualization tasks without needing Microsoft Excel. Whether you're analyzing sales data, importing data for reports, or creating visualizations from Excel data, IronXL offers a robust solution for managing Excel files in Python applications. IronXL provides a free trial for users to explore its features, with licenses beginning at $799 for those ready to fully integrate its capabilities. 常見問題解答 如何在沒有 Microsoft Excel 的情況下用 Python 讀取 Excel 文件? IronXL 允許您在沒有 Microsoft Excel 的情況下在 Python 中讀取 Excel 文件。您可以使用 WorkBook.Load("data.xlsx") 加載工作簿,直接訪問工作表和單元格數據。 使用 IronXL 在 Python 中讀取 Excel 文件需要什麼設置? 要使用 IronXL,請確保您已安裝 .NET 6.0 SDK,Python 3.0 或更高版本,以及 pip。設置您的編碼環境在 Visual Studio Code 中,以便開始處理 Excel 文件。 如何在 Python 中安裝 IronXL? 在您的終端中運行命令 pip install ironxl 以安裝 IronXL。這會安裝庫,允許您讀取和操作 Excel 文件。 我可以使用 IronXL 在 Excel 文件上執行數據分析操作嗎? 是的,IronXL 支持各種數據分析操作,例如計算總和、查找最小值和最大值,以及識別 Excel 表格中的唯一值。 如何使用 IronXL 查找 Excel 範圍內的唯一值? 要查找唯一值,可以使用集合推導式來迭代單元格範圍並提取不同的文本值。此方法有效識別所有唯一項目。 是否可以使用 IronXL 計算 Excel 中的特定值? 是的,您可以通過迭代單元格範圍並使用生成器表達式計算特定值的出現次數,並對單元格文本與目標值匹配的情況進行求和。 使用 IronXL 在 Python 中操作 Excel 的好處是什麼? IronXL 提供了一個強大的 API 用於操作 Excel 文件,而不需要 Microsoft Excel。它是進行數據分析、清理和可視化等任務的理想選擇,提升了 Python 項目的生產力。 如何編寫 Python 腳本來使用 IronXL 讀取 Excel 文件? 創建一個名為 ReadExcel.py 的 Python 腳本,導入必要庫,設置您的 Python 路徑,並使用 IronXL 的方法來加載和交互 Excel 工作簿和數據。 我可以對 Excel 數據執行哪些操作使用 IronXL? IronXL 允許進行各種操作,如讀取單元格值、選擇工作表、計算總和、找最小/最大值,以及計算 Excel 數據範圍中特定出現次數。 Curtis Chau 立即與工程團隊聊天 技術作家 Curtis Chau 擁有卡爾頓大學計算機科學學士學位,專注於前端開發,擅長於 Node.js、TypeScript、JavaScript 和 React。Curtis 熱衷於創建直觀且美觀的用戶界面,喜歡使用現代框架並打造結構良好、視覺吸引人的手冊。除了開發之外,Curtis 對物聯網 (IoT) 有著濃厚的興趣,探索將硬體和軟體結合的創新方式。在閒暇時間,他喜愛遊戲並構建 Discord 機器人,結合科技與創意的樂趣。 相關文章 更新日期 6月 22, 2025 如何在 Python 中讀取具有多個工作表的 Excel 文件 在這篇文章中,我們將探討如何使用 IronXL for Python 讀取多個 Excel 工作表,包括那些具有多個工作表的文件。 閱讀更多 更新日期 6月 22, 2025 在不需要 Pandas 的情況下,使用 Python 讀取 Excel 文件(無需 Interop) 處理 Microsoft Excel 時,pandas 是首先想到的庫,但還有其他強大的庫如 IronXL,提供性能和速度。 閱讀更多 更新日期 6月 22, 2025 如何使用 Python 將圖片插入 Excel 這篇文章將指導您使用 IronXL 在 Python 中將圖像插入 Excel 的過程。 閱讀更多 Python 用於 Excel 文件的包(不使用 Interop)如何在 Python 中查看 Excel 文件
更新日期 6月 22, 2025 如何在 Python 中讀取具有多個工作表的 Excel 文件 在這篇文章中,我們將探討如何使用 IronXL for Python 讀取多個 Excel 工作表,包括那些具有多個工作表的文件。 閱讀更多
更新日期 6月 22, 2025 在不需要 Pandas 的情況下,使用 Python 讀取 Excel 文件(無需 Interop) 處理 Microsoft Excel 時,pandas 是首先想到的庫,但還有其他強大的庫如 IronXL,提供性能和速度。 閱讀更多