使用 IRONXL FOR PYTHON 如何使用 Python 导出到 Excel 文件 Curtis Chau 已更新:六月 22, 2025 Download IronXL pip 下载 Start Free Trial Copy for LLMs Copy for LLMs Copy page as Markdown for LLMs Open in ChatGPT Ask ChatGPT about this page Open in Gemini Ask Gemini about this page Open in Grok Ask Grok about this page Open in Perplexity Ask Perplexity about this page Share Share on Facebook Share on X (Twitter) Share on LinkedIn Copy URL Email article A crucial necessity for many apps and enterprises in today's data-driven environment is the ability to export data to Excel spreadsheets. Thanks to its familiarity and adaptability, the Excel file continues to be a favored format for producing reports, performing analysis, and communicating findings with stakeholders. Developers have access to robust tools for working with Excel files because of Python's vast ecosystem of libraries. A reliable option for easily exporting data to Excel spreadsheets is IronXL, which stands out among the others. We will look at how IronXL for Python makes data exporting to a worksheet easier in this post, giving developers more control over how their data export procedures are organized. How to Export to Excel File Using Python In Visual Studio Code, create a Python file. Install the Pip Python IronXL library. Establish the data that needs to be exported to Excel. Map the data using the Excel library to the specific cell. To export all data frames to the new Excel file, save it. IronXL IronXL is a feature-rich Python library designed especially for usage with Excel files. Programmers have a plethora of solutions at their disposal for reading, writing, editing, and altering spreadsheet data. Built on top of the .NET framework, IronXL combines the flexibility of Python with the performance of .NET to offer an efficient means of interacting with Excel files. One of IronXL's primary strengths is its simplicity of reading data from existing Excel files. Developers may quickly extract data from specific files, such as formatted cells, rows, lists of column names, and object cells that follow values or columns, enabling them to incorporate Excel spreadsheet data into Python programs with ease. Whether you need to retrieve sales, customer, or financial data, IronXL provides the tools you need to work with your Excel file data effectively. Features of IronXL Data may be easily read from existing Excel files and written to either newly constructed or pre-existing spreadsheets with the help of IronXL. This includes a wide range of functionalities, including cell value access, formatting, and formulas. Key Feature Examples Cross-Platform Compatibility: Because IronXL is designed to work smoothly on a range of platforms, including Windows, Linux, and macOS, it is a versatile alternative for Python developers regardless of their operating system. Efficient Performance: IronXL, which is based on the .NET framework, processes and effectively manipulates Excel files, even when working with large datasets. It does this by combining the flexibility of Python with the efficiency of .NET. Support for Excel Formats: IronXL can open and operate a variety of Excel file formats, including: xls (Excel 97–2003), .xlsx (Excel 2007 and later), comma-separated values file (CSV), and .xlsm (Excel with macros enabled). Advanced Data Manipulation: IronXL enables users to perform more complex data manipulation operations in Excel spreadsheets, such as sorting, filtering, and aggregating, which can help derive valuable insights. Cell Formatting: IronXL's cell formatting tools, which include font styles, colors, borders, and alignment, can improve the visual appeal and readability of Excel spreadsheets. Formula Calculation: Users can utilize IronXL to perform dynamic calculations inside Excel spreadsheets, as well as formula evaluation and formula reference updating. Integration with the Python Environment: Users may effortlessly integrate IronXL with other Python frameworks and packages to perform comprehensive data visualization and analysis by combining its features with them. Ease of Use: IronXL's simple, user-friendly API makes it suitable for Python developers of all expertise levels. Its well-documented interface provides detailed instructions on how to take full advantage of all of its capabilities. In essence, IronXL helps Python developers overcome the challenges associated with managing Excel files by offering a dependable and intuitive method of integrating Excel functionality into Python applications. IronXL provides the flexibility and tools needed to succeed in manipulating Excel files within the Python ecosystem, whether you're creating interactive dashboards, automating reporting tasks, or developing data analysis tools that require reading Excel files. Go here to learn more about the IronXL for Python library. Setup Environment Prerequisites Before starting the guide, confirm that the following are installed on your computer: .NET 6.0 SDK: IronXL requires the .NET 6.0 SDK to be installed on your computer because it was built using it. Python 3.0+: You must have Python 3.0 or a later version installed to follow this tutorial. pip: Since IronXL will need the Python package installer pip, install it first. Install IronXL Create a Python file named ExportData.py after opening this file in Visual Studio Code. Our script for using IronXL to export Excel files is contained in this file. In Visual Studio Code, select Terminal > New Terminal from the menu to open the command line. The first thing to do before using IronXL is to install the library. You can rapidly install IronXL by running the following command with pip, Python's package manager: pip install ironxl pip install ironxl SHELL IronXL may now be used to read Excel spreadsheet files that you have installed. Export Data To Excel using IronXL With IronXL for Python, exporting data to a new or existing Excel file without the need to import Pandas is simple. Let's examine a straightforward illustration of data exporting to an Excel spreadsheet: from ironxl import WorkBook # Sample dataset created as a list of lists data = [ ["Name", "Age", "Salary"], ["John", 30, 50000], ["Alice", 25, 60000], ["Bob", 35, 70000] ] # Create a new Excel WorkBook document workbook = WorkBook.Create() # Create a blank WorkSheet worksheet = workbook.CreateWorkSheet("new_sheet") # Write data to Excel worksheet worksheet.InsertColumn(4) worksheet.InsertRow(len(data) + 1) # Loop through rows and columns in the dataset for row_idx, row_data in enumerate(data): for col_idx, cell_data in enumerate(row_data): try: # Set the cell value worksheet.SetCellValue(row_idx, col_idx, str(cell_data)) except Exception as e: print("An exception occurred: " + str(e)) # Save the workbook to the specified file path workbook.SaveAs("output.xlsx") from ironxl import WorkBook # Sample dataset created as a list of lists data = [ ["Name", "Age", "Salary"], ["John", 30, 50000], ["Alice", 25, 60000], ["Bob", 35, 70000] ] # Create a new Excel WorkBook document workbook = WorkBook.Create() # Create a blank WorkSheet worksheet = workbook.CreateWorkSheet("new_sheet") # Write data to Excel worksheet worksheet.InsertColumn(4) worksheet.InsertRow(len(data) + 1) # Loop through rows and columns in the dataset for row_idx, row_data in enumerate(data): for col_idx, cell_data in enumerate(row_data): try: # Set the cell value worksheet.SetCellValue(row_idx, col_idx, str(cell_data)) except Exception as e: print("An exception occurred: " + str(e)) # Save the workbook to the specified file path workbook.SaveAs("output.xlsx") PYTHON The code snippet above creates a sample dataset as a list of lists representing data rows and columns. Then, we use nested loops to write each data frame to a new Excel worksheet created using IronXL's CreateWorkSheet method. We can create multiple sheets similarly. The output target file can be saved as "output.xlsx", which creates a new Excel file at the specified location. Customizing the Excel Export # Customizing Excel export worksheet["A1"].Style.Font.Bold = True # Make the font in cell A1 bold worksheet["A1"].Style.BackgroundColor = "Red" # Set the background color of cell A1 to red worksheet.Columns[0].Width = "20" # Set the width of the first column worksheet.Columns[0].FormatString = "$#,###0.00" # Format the column as currency # Save the workbook workbook.SaveAs("formattedoutput.xlsx") # Customizing Excel export worksheet["A1"].Style.Font.Bold = True # Make the font in cell A1 bold worksheet["A1"].Style.BackgroundColor = "Red" # Set the background color of cell A1 to red worksheet.Columns[0].Width = "20" # Set the width of the first column worksheet.Columns[0].FormatString = "$#,###0.00" # Format the column as currency # Save the workbook workbook.SaveAs("formattedoutput.xlsx") PYTHON Without using any additional Python libraries installed, we may change the look of the generated Excel spreadsheet in this example by bolding the font, changing the background color of cell row A1 to yellow, modifying column B's width, and formatting column C as currency. IronXL can handle missing data representation in the Excel spreadsheet. To learn more about IronXL's code, check here. Below is the output generated from the above code. Conclusion We have looked at how IronXL for Python makes data exporting to Excel spreadsheets easier in this article. IronXL offers a reliable and simple solution for data exporting, from installing the library to modifying the exported data. IronXL for Python gives developers the ability to optimize their data export processes and open up new possibilities for data management and visualization, whether they're creating reports, exchanging insights, or performing analysis. Explore the world of data export with IronXL for Python and enhance your apps that are powered by data. A permanent license, upgrade options, and a year of software support are included with IronXL's $799 Lite edition. During the trial period, customers can evaluate the product in real-world scenarios. To find out more about IronXL's pricing, licensing, and a free trial. Alternatively, go to this website to learn more about Iron Software. Guest: Joint Jackal 常见问题解答 如何使用 Python 将数据导出为 Excel 文件? 您可以使用 IronXL 在 Python 中将数据导出到 Excel 文件中。首先,使用 Visual Studio Code 设置 Python 环境,通过 pip 安装 IronXL 库,然后使用 IronXL 的方法将数据写入 Excel 工作簿。 使用 Python 将数据导出到 Excel 的先决条件是什么? 要使用 IronXL 导出数据到 Excel,确保您的系统上已经安装了 Python 3.0 或更高版本、用于包管理的 pip 和 .NET 6.0 SDK。 使用 Python 导出数据时支持哪些 Excel 格式? IronXL 支持多种 Excel 格式,包括 .xls、.xlsx、.csv 和 .xlsm,提供导出数据的灵活性。 我能否使用 Python 对 Excel 电子表格进行数据操作? 是的,IronXL 允许您在 Python 应用中直接对 Excel 电子表格进行高级数据操作,例如排序、过滤和聚合数据。 IronXL 是否与不同操作系统兼容以进行 Python 开发? 是的,IronXL 是跨平台的,可以在 Windows、Linux 和 macOS 上使用,是 Python 开发者处理 Excel 数据的一个多功能选项。 如何使用 Python 自定义 Excel 电子表格的外观? 借助 IronXL,您可以通过格式化单元格、设置字体样式、应用颜色和边框以及对齐文本来自定义 Excel 电子表格,从而增强数据的呈现。 使用 IronXL 进行 Excel 操作对 Python 开发者有什么好处? IronXL 提供高效性能、支持多种 Excel 格式、先进的数据操作、公式计算和与 Python 环境的无缝集成。 使用 IronXL 将数据导出到 Excel 是否需要额外的库? 不需要,IronXL 包含了导出数据到 Excel 文件所需的所有功能,消除了对像 Pandas 这样的额外库的需求。 在哪里可以找到使用 IronXL 与 Python 的文档? 有关使用 IronXL 与 Python 的详细文档,包括示例代码和教程,您可以在 Iron Software 网站上找到。 Curtis Chau 立即与工程团队聊天 技术作家 Curtis Chau 拥有卡尔顿大学的计算机科学学士学位,专注于前端开发,精通 Node.js、TypeScript、JavaScript 和 React。他热衷于打造直观且美观的用户界面,喜欢使用现代框架并创建结构良好、视觉吸引力强的手册。除了开发之外,Curtis 对物联网 (IoT) 有浓厚的兴趣,探索将硬件和软件集成的新方法。在空闲时间,他喜欢玩游戏和构建 Discord 机器人,将他对技术的热爱与创造力相结合。 相关文章 已更新六月 22, 2025 如何在 Python 中读取具有多个工作表的 Excel 文件 在本文中,我们将探索如何使用 IronXL for Python 读取多个 Excel 工作表,包括那些包含多个工作表的文件 阅读更多 已更新六月 22, 2025 无需 Pandas 即可在 Python 中读取 Excel 文件(无需 Interop) 处理 Microsoft Excel 时,第一个想到的库是 pandas,但还有其他强大的库如 IronXL,它们提供性能和速度。 阅读更多 已更新六月 22, 2025 如何使用 Python 将图像插入 Excel 本文将指导您完成使用 IronXL 在 Python 中将图像插入 Excel 的过程。 阅读更多 如何使用 Python 读取 Excel 电子表格如何在 Python 中使用 Excel API
已更新六月 22, 2025 如何在 Python 中读取具有多个工作表的 Excel 文件 在本文中,我们将探索如何使用 IronXL for Python 读取多个 Excel 工作表,包括那些包含多个工作表的文件 阅读更多
已更新六月 22, 2025 无需 Pandas 即可在 Python 中读取 Excel 文件(无需 Interop) 处理 Microsoft Excel 时,第一个想到的库是 pandas,但还有其他强大的库如 IronXL,它们提供性能和速度。 阅读更多